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An analysis is made of the error in calculating the density of a high-temperature gas without
taking into account the effect of internal density jurnps and the inaccuracy with which the loca-
tion of interference fringes has been measured, The resultant density distribution is shown
across one section of a cone in an air stream behind a shock wave,

For studies of a high-temperature gas stream around various models, of the boundary layer, of the
heat transfer, etc. one often uses optical methods of measurement. In these models the determination of
local characteristics of axially symmetrical inhomogeneities reduces to the solution of the Abel integral
equation., The usual procedure for obtaining a solution is to approximate the measured function within a
given zone by a known function: a constant, a straight line, a second-order or higher-order curve. Be-
cause of the inherent inaccuracy of such an approximation, an error is then introduced in the determina-
tion of local characteristics. Experience has shown that this error is small in the case of continuous
functions but becomes significant near locations where the inhomogeneity parameters change suddenly and
the approximating curve deviates from the actual curve most. The problem of reducing the error in the
calculation of density jumps by applicable methods arises in the evaluation of test data on the density of a
high-temperature gas around a model body in a shock tube.

The measurements were made with an interferometer and a diffraction grating in a model IAB-451
instrument [1]. Typical interferograms are shown in Fig. 1a, b. The pattern produced in a stream around
a sphere by interference fringes of diffraction orders +1 and —1 are shown in Fig. la, To the

Fig. 1. (a) Interference pattern in a stream around a sphere
in a shock tube (interference fringes of orders +1 and —1), (b)
interference pattern in a stream around a conic segment in a
shock tube (interference fringes of orders 0 and +1).
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£y) left of the principal image there appears an image simi-
"3 lar to one obtained by the light-spot method. It is pro-
/ duced by interference between fringes of orders ¢ and
+1.
2 2 3 The pattern obtained by interference fringes of
\/ orders 0 and +1 in a stream around a conic segment is
87 s shown in Fig. 1b.
' 2 3 ~ In this case the stream structure was quite com-
s plex. The leading shock wave travelling through low-
5, ! density air (p ~2°107% g /cm? at a velocity of ~ 3000
“ﬁ m /sec constituted the inhomogeneity boundary, Be-
0 q2 a4 96 28 P hind this leading wave followed a rarefaction wave con-

stituting a zone of large negative density gradients,
The test model was located within the Mach cone, i.e,,
the zone of constant stream parameters. The dengity
jump at the model was that internal jump behind which
the density was to be determined. If the density wnder
the bottom of the model was to be determined, then
attention had fo be paid to the zone of large gradients
appearing at the separation and the transition to a bot-
tom vacuum,

Fig. 2. Distribution of interference fringe
shifts across an inhomogeneity section in an
air stream around a cone behind a shock wave:
maximum shifts of interference fringes (1),
minimum shifts of interference fringes (2),
curve of fringe shifts without accounting for
internal density jumps (3). Points repre~
sent test values of interference fringe shifts.

The shift of interference fringes has been plotted in Fig. 2 for a section through an axially sym-
metrical inhomogeneity emerging around the cone, The points represent test values of the shift obtained
through a A /4, based on measurement of the location of bright fringes, dark fringes, and the boundaries
between them. The solid lines represent the maximum fringe shift (1) and the minimum fringe shift (2).
The difference between them 26f(y) results from the inaccuracy involved in measuring the shift of inter-
ference fringes. The dashed line is a result of quadratic interpolation of test values without accomting for
internal density jumps.

In the course of this study the authors compared the results of calculations by the methods in [2] and
in [3]. The values of [p(r;)—p,] were calculated from curves 1-3 by various methods disregarding the effect
of a jump. The final density graph is shown in Fig. 8. The spread of values is rather wide. The method
of linear interpolation for the zone of the rarefaction wave behind the leading shock wave (r; = 0.8) has
yielded negative values for the gas density in the stream. The values obtained by different methods for
the density within the zone of the strong leading shock wave differed by 10-20%.

It is to be noted that guadratic interpolation of the test function without accounting for the radical
relation f(y) (ecurve 3 in Fig. 2) within zones near jumps of the refractive index has yielded a large error
in the density calculation: the density discontinuity has been transformed into a high-gradient zone (curve 3
in Fig. 3).

After completion of calculations based on the shadow pattern and the refraction of interference
fringes, the location of density jumps was determined and appropriate corrective terms were added ac-
cording to the method in [4]. The jump coordinate is r = 0.2 on curve 1 and ry = 0.196 on curve 2. The
difference between those two values represents the error dry in the determination of the jump coordinate.
It is to be noted that éryy, which results from anintersectionof curves between the jump and the left-hand
branches of the fringe shift curves 1 and 2, is equal to érgyy, incurred directly during measurement of the
jump location on the shadow pattern. The addition of corrective terms has, in effect, eliminated the dis-
crepancy between both results, Values obtained by the different methods agree after correction. Mean-
while, the corrected values for curves 1 and 2 in Fig. 2 differ appreciably, especially for the zones of high
density gradients. This has made it possible to estimate the error in the density determination due to the
inaccuracy with which the shift of interference fringes and the location of a density jump are measured.
Evidently, if corrective terms are added in the calculation of axially symmetrical inhomogeneities with
density jumps, then the total error is entirely determined by the measurement error. If no corrective
terms are added, however, then the error due to internal jumps becomes predominant in calculations for
the zones near density jumps.

203



@-ph0* T T
(P)P)’ﬂqr ]'

fELd
<3z ~

! ‘ Fig. 3. Calculated density distribu-
I — 1 tions (kg-sec’/m% across an in-
homogeneity section, in an air stream
around a cone behind a shock wave:
e by the method in [2] with N = 25 (I), by
the method in [8] with N = 50 (II), by
the method in [3] with N = 25 for curve
1 1 (II), by the method in [3] with N
"\ = = 25 for curve 2 (IV), for curve 3 in
e Fig. 2 (V). Density curves calculated
; ! from curves 1, 2, 3 in Fig. 2 after an
\‘»\ | addition of corrective terms (1, 2, 3
respectively). Values of p, are indi-
B> ! cated between vertical arrows.
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This has made it possible to define the ranges of inhomogeneity which require corrective terms for
density calculations. In practice these terms are needed in calculations for one or two zones near a jump,
while these ranges are much smaller in methods based on quadratic approximation than in methods based
on linear approximation.

An analysis of many calculations similar to those described here and made for various test objects
has shown that the error due to an internal jump may vary widely in magnitude, In the case of linear
approximation this error is large and, therefore, the addition of corrective terms if most often justified.
In the case of quadratic approximation one may often omit corrective terms, especially when the measure-
ment error is sufficiently large while the jump is small and zones far from it are of main interest.

In practical measurements it is worthwhile to estimate the magnitudes of corrective terms and of
measurement errors so as to be able, when cousidering the specific purpose of an experiment, to decide
whether the former are necessary or the latter should be accounted for. When precision measurements
are required, there arises the problem of improving the accuracy in determining the optical path differ-
ences within various regions of an inhomogeneity and in determining the locations of density jumps. For
studying inhomogeneities with large internal density gradients, it is necessary to use a method by which
values of the measured function can be found at more points,

NOTATION
p is the density in a given inhomogeneity;
Po is the density in the unperturbed stream;
ry is the coordinates of a point where the density is calculated, referred to the radius of the in~
homogeneity;
y is the referred coordinates of the point of entrance of the light beam into the inhomogeneity;
f(y) is the function of the shift of interference fringes;
of(y) is the error in the value for f(y) due to measurement inaccuracy.
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